系外行星呈现出多种多样的轨道构型,这反映了它们的形成过程以及亿万年来通过引力相互作用进行的动力学演化。这段历史被编码在行星系统的角动量结构中即中心恒星的旋转特性与行星轨道几何之间的关系。
一个主要的可观测特征是恒星自转轴与其行星轨道平面之间的对齐(或倾斜),称为恒星倾角。目前已经测量了数百颗靠近宿主恒星的巨行星的自旋-轨道夹角限制,其中许多揭示了行星存在于倾斜轨道上。一个关键问题随之浮现:恒星倾角主要是源于与系统中其他行星或遥远恒星的引力相互作用?还是“原始的”,即在恒星形成过程中就已形成?
研究者对年轻、孤立的类太阳恒星的自转轴与其原行星盘外部区域方向之间的原始倾角进行了全面评估。大多数系统符合角动量对齐,但约三分之一的孤立年轻系统表现出原始的倾角。这表明,在较老年龄的行星系统中观测到的某些倾角包括太阳系中太阳与行星之间较为温和的倾角可能源于其形成时的初始条件。
光泳是一种气体(或液体)中悬浮的颗粒被光加热后产生的运动力。人们已经知道这种原理超过百年,但直到近期才开始探索它的实际用途。在地球大气层上层,空气十分稀薄,光泳的力强到足以让小型物体漂浮。但迄今为止,大多数实验都集中在非常小而轻的材料上,将之扩展到更大、更实用的大型设备一直是个挑战。
美国哈佛大学的Benjamin Schafer与合作者研究了一种小型太阳能漂浮装置,由两片薄而多孔的膜通过微小的垂直支撑连接而成。结合计算机建模和实验室实验优化光泳力后,他们制作了一个宽1厘米的圆盘,能够在与高空阳光强度相当的光照下悬浮。他们还提出了一种3厘米宽的版本,计算机模型显示它白天在75公里高空能够携带10毫克的载重(足以支撑包含射频天线、太阳能电池和集成电路的小型通信系统)。
这些发现凸显了光泳飞行作为监测地球大气甚至探索其他行星的工具的潜力。作者觉得,现在的火星运输成本每公斤超过10万美元,而相比专门的火星卫星,光泳装置在尺寸、重量和功耗方面均有显著优势,未来可用于执行传感和通信任务。未来的设计可以包含导航系统、增加载荷能力和运行时长,以及执行更大规模的任务。
12,433个实用装置的大气悬浮。向上推力由热对流气流通过装置膜上的434个微尺度孔洞产生。回流发生在远离装置的位置。图片来源于:哈佛大学
过渡金属氢化物已大范围的应用于催化羰基、烯烃和炔烃等不饱和基团的加氢功能化。金属氢化物氢原子转移(MHAT)作为非活化烯烃自由基加氢功能化的一种很有前途的策略,弥补了金属氢化物键的异裂作用,以此来实现了复杂分子的后期多样化。然而,由于前手性有机自由基与对映纯催化剂之间的弱相互作用,不对称MHAT6仍然具有挑战性。
研究者发现细胞色素P450酶(CYPs)可以被重新利用来催化不对称的MHAT反应,这是一种新的自然反应。P450BM3的定向进化产生了一个三重突变体,该突变体催化非活化烯烃的MHAT自由基环化,在有氧全细胞条件下产生多种环化合物,包括吡啶和哌啶,其对构象比高达98:2。除了缺电子的烯烃,其他的自由基受体包括腙、肟和腈也被重新利用的P450BM3转化为富集对映体的环化产物。
机理研究支持MHAT机制是由一种易逝的铁(III)-氢化物的均溶解理进行的。从CYP119开始,定向进化提供了立体互补的MHATase,突出了重新利用CYPs进行MHAT生物催化的潜力。该研究强调了将均溶金属氢化物反应性整合到金属酶中的前景,从而扩大了不对称自由基生物催化的范围。
元素周期表为理解化学性质提供了一个直观的框架。然而,对于位于周期表底部的最重元素,其传统的规律模式可能会被打破。锕系元素(原子序数Z88)和超重元素(Z104)的巨大原子核会引起相对论效应,预计这将大幅改变它们的化学行为,这可能表明人们已经到达了可预测元素周期表的终点。
与镧系元素相比,锕系元素表现出的异常化学性质已被归因于相对论效应。遗憾的是,由于对后序锕系元素和超重元素的研究稀少,研究者难以全面理解相对论效应的全部影响。在镄(Z=100)之后的元素,需要用加速离子束和最先进的实验办法来进行单原子级的合成与研究。迄今为止,尚没有一点实验能够直接鉴定所产生的分子物种。
研究者在劳伦斯伯克利国家实验室的88英寸回旋加速器设施中,通过核反应合成了锕(Ac)和锘(No)的离子,并将其暴露于痕量的H2O和N2中。随后,利用 FIONA(用于鉴定核素A的装置)测量其质荷比,从而直接鉴定了所产生的分子物种。
研究者表示,这些结果标志着首次利用单原子级技术直接鉴定重元素分子物种,并突显了此类鉴定在未来超重元素化学实验中的重要性,以深化对其化学性质的认识。
气候变化预计将增加河流洪水的频率和强度。洪水不仅通过淹没和人员受伤或死亡造成破坏,还会因岸堤失稳和河床侵蚀过程而危及基础设施,而这些过程目前尚不完全清楚。常见的防洪安全计划包括堤防加固和河道拓宽。2021年发生在默兹河流域的洪水导致43人死亡,并对基础设施造成数十亿美元的损失。
研究者基于对默兹河洪水的分析,揭示了河道的不均匀拓宽以及河床下方沉积物的非均质性如何导致大规模侵蚀。
一项近期的防洪安全计划拓宽了河道,但在某些瓶颈段,拓宽要么被基础设施阻挡,要么尚未实施。构造抬升加剧了河床侵蚀,该抬升形成了覆盖在细粒沉积物之上的薄层表砾层。
在这些瓶颈段,流速飞速增加,形成了带波谷的水下沙丘。这些沙丘的波谷击穿了砾石保护层,暴露出易受侵蚀的沙层,最终形成了极深的冲刷坑,其中一个深度超过15米。
作者表示,该研究凸显了在气候平均状态随时间的变化、洪水风险加剧以及河道拓宽空间竞争加剧的背景下,河道再工程化所面临的挑战。同时,该研究也呼吁亟需加强对河床下伏地层的研究与理解。
融冰与变暖海洋之间的相互作用驱动着格陵兰潮水冰川当前的退缩,这对海平面上升和全球气候系统均产生一定的影响。这些冰-海相互作用控制着冰川前缘消融,涉及一系列将冰川崩解即冰山的分离和海底融化与更广泛的峡湾动力学联系起来的小尺度过程链。
然而,对这些过程的理解仍然有限,这在很大程度上是由于难以在崩解前沿附近危险环境中进行有充足时空分辨率的针对性观测。
研究者揭示了冰山崩解可通过激发瞬态内波而充当海底融化的放大器。他们的观测基于对冰山崩解过程链进行的近前缘海底光纤传感。在这一过程链中,崩解始于持续的冰体破裂,这些破裂汇聚导致冰山分离;冰山分离进而激发局地海啸、内重力波以及冰前缘的瞬变流,最终冰山碎裂成块。
他们的观测揭示了潮水冰川与变暖海洋相互作用的先前未知的路径,并有助于闭合冰前消融收支这是当前模型难以做到的。这些见解提供了关乎全世界内正在退缩的潮水冰川的全新过程尺度理解。
特别声明:本文转载只是出于传递信息的需要,并不代表代表本网站观点或证实其内容的真实性;如别的媒体、网站或个人从本网站转载使用,须保留本网站注明的“来源”,并自负版权等法律责任;作者若不希望被转载或者可以联系转载稿费等事宜,请与我们接洽。
东南大学张宇、武昊安/郑大一附院荆自伟等综述:破解单原子纳米酶稳定 ...
Views: